Highly stressed carbon-fiber reinforced concrete members

Research on long-term behavior

A major part of the damages occurring at steel-reinforced concrete structures is caused by the corrosion of the steel reinforcement. Cost-intensive and time-consuming repair works or new replacement constructions are often required even before reaching the intended service life. For this reason, carbon-fiber reinforced polymers (CFRP), which are in particular characterized by their high tensile strength and their resistance to chemical and physical influences, have been a subject of research for some time now. Despite the increased use of this reinforcement and the intensive research conducted in this field, sufficient experience on the long-term behavior of highly stressed carbon-fiber reinforced concrete members is not available. Since the use of carbon fiber reinforcement is intended to extend the service life of structures, precise knowledge of the load-bearing, cracking and deformation behavior of carbon fiber reinforced concrete members under long-term loading is required.

Within a research project promoted by the German Federal Ministry of Education and Research, experimental and theoretical investigations are carried out on the load-bearing behavior of carbon-fiber reinforced concrete members. In addition to analyses of the material behavior of concrete and reinforcement, which include strength, modulus of elasticity and creep characteristics, reinforced concrete members are tested under short-term loading as well as under monotonic and cyclic long-term loading and analyzed in terms of bending and shear capacity. Both members with carbon and steel reinforcement are tested enabling a direct comparison and identification of possible differences. The findings obtained are used to check existing engineering models regarding their suitability for the prediction of the load-bearing behavior of carbon-fiber reinforced concrete members and, if required, to modify them.

Related articles:

Issue 2021-02

Punching shear behavior of steel fiber reinforced flat slabs in combination with punching shear reinforcement

The guideline “Steel Fibre Reinforced Concrete” published by the German Committee for Reinforced Concrete (DAfStb) in 2012 regulates the punching shear design of steel fiber reinforced flat slabs...

more
Issue 2022-06

New edition of the DAfStb guideline on steel fiber reinforced concrete – Latest regulations and developments

Steel fiber reinforced concretes have an enormous potential due to the elimination of labor-intensive and time-consuming reinforcement works. In addition to this, steel fiber reinforced concretes...

more
Issue 2021-02

Digital evolution – From fiber to textile fabric

Carbon-reinforced concrete on the basis of textile reinforcement is a future-oriented alternative to reinforced concrete. When a patent application was filed for reinforced concrete in 1867, textile...

more
Issue 2022-06

Cracking behavior and splitting failure mode in textile-reinforced concrete

The existing knowledge of the bond behavior of reinforced concrete cannot be transferred “as is” to textile-reinforced structures. The bond between textile reinforcement and concrete is dependent on...

more
Issue 2013-09 V. Fraas

First reference project in Switzerland

Textile-reinforced concrete using carbon fibers and 3D lattice structures from the SGL Group and V. Fraas Solutions in Textile is an innovative composite material that consists of a fine-grained...

more