Structural and deformation behavior

Large-scale tests on precast carbon-reinforced concrete beams

With the innovative composite material carbon-reinforced concrete, thin-walled, high-performance components can be realized. Applicable design concepts and engineering rules are necessary to accurately predict their structural and deformation behavior. As part of the C3-V1.2 collaborative research project, verification models and structural design rules for new components were developed at the Institute of Structural Concrete at RWTH Aachen University. At the end of the project, the applicability of the models was to be tested on a real scale. For this purpose, three profiled precast carbon-reinforced concrete beams were designed and produced in collaboration with Hentschke Bau GmbH and loaded to failure in large-scale tests carried out in Aachen. A realistic line load was applied in an elaborate test rig by means of an upside-down test. The 8 m long beams were very slender, with a height of 90 cm and an upper and lower-chord width of 20 cm and a web width of 5 cm. Carbon bars of 8.5 mm in diameter were used as flexural reinforcement, whereas grids consisting of expoxy-impregnated carbon rovings were used as shear reinforcement. Subsidiary reinforcement consisted of expoxy-impregnated carbon and glass grids. A self-compacting high-performance concrete with a maximum aggregate size of 5 mm was adjusted specifically for the slender component shape.

The tests were specifically designed for bending tensile failure of the longitudinal reinforcement or bending compressive failure of the concrete. Test results showed that existing flexural models predicted the behavior of structural components with mixed reinforcement very accurately. Various calculation methods are available for accurately determining both their maximum load-bearing capacity and deflection in the serviceability limit state. In future, however, a rethink is called for with regard to the ductility and robustness of carbon-reinforced concrete components. In this respect, pronounced cracking as well as the large ultimate strain and deflection compensate for the lacking yield capacity of the reinforcement.

Related articles:

02/2013 Construction Engineering

Hybrid prestressed concrete beams providing flexibility for building services

Modern buildings must increasingly ensure that technical installations be accommodated in the available intermediate floor space. Precast prestressed concrete beams can be used as an alternative to...

02/2017 New possible applications

High flexural tensile strength concrete

Nowadays, fiber-reinforced concrete is often used to increase the flexural tensile strength of the material. This approach enables a reduction in the ratio of conventional reinforcement or its...

02/2018 Carbon-reinforced concrete in construction

Preparation for regulations

Most of the building projects using textile and/or carbon reinforced concrete, which have already been realized, are based on approvals on case-by-case basis. Apart from the approvals on case-by-case...

02/2019 Micro-reinforced precast members

Potentials of an almost forgotten construction method

The dimensions of typical precast beams can be reduced significantly thanks to the use of high-performance and ultra-high-performance concrete. As a result, the concrete cover of beams having a more...

02/2018 Carbon-reinforced concrete

Reinforcement structures with high temperature stability

An insufficient fire resistance of the composite material has so far inhibited a broad application of carbon-reinforced concrete. The reinforcement elements available at present are composite...