Testing and analysis of the structural behavior

3D-printed reinforced-concrete elements

Additive manufacture (AM) and/or 3D printing with concrete represents a highly innovative and future-oriented production technology for the construction industry. For one, linkage with modern information and communication technology results in automated production and, second, it enables production of a great variety of forms with high cost efficiency at the same time – even for the smallest quantities – of (steel-reinforced) concrete elements.

Most investigations currently focus on the concrete material itself (e.g., pumpability and green strength of the fresh concrete), on which a number of research results are already available. Investigations must be intensified, however, regarding integration of the required steel reinforcement in the printing process, as well as regarding the load-deformation behavior of the printed structural elements.

At the iBMB, Department of Concrete Structures at TU Braunschweig, Germany, in collaboration with the Institute for Structural Design (ITE) of TU Braunschweig, the first concrete columns with integrated steel-bar reinforcement were printed on the basis of SC3DP (Shotcrete 3D Printing) AM technology developed at ITE (Fig.). The 3D-printed reinforced-concrete columns were initially examined at the iBMB, Department of Concrete Structures, with regard to their precision of manufacture and integrity, and were then tested under longitudinal uniaxial excentric compression. Compared to a conventionally manufactured column (formwork and compacted concrete), comparable load-deformation behavior resulted; however, the 3D-printed reinforced-concrete columns evidenced a greater degree of spalling. Subsequent numeric analysis of the load-deformation behavior by non-linear framework analyses showed that the ultimate loads can be well predicted by taking into consideration the real dimensions of the structural elements, in accordance with the above-stated measured manufacturing precision.

Related articles:

Issue 2017-02 Robot-supported injection technology

Additive manufacturing of concrete elements

Additive manufacturing has evolved in recent years from its origins of rapid prototyping to a future-oriented production technology. Fully functional construction elements are today already being...

Issue 2020-02 3D printing

Additive Manufacturing of 1:1 reinforced concrete elements with post-processed surfaces

Additive Manufacturing (3D printing) has the potential of becoming an automated production technology tailored to the individual requirements of the construction industry. The basic principle of...

Issue 2017-02 Potential applications in structural engineering

3D concrete printing

The processing of cementitious materials is at the technological core of modern construction. In recent years, new construction techniques such as 3D concrete printing have been developed that open up...

Issue 2020-02 Concrete powder printing process

The next level

At times, concrete has been regarded as being cold and not very creative. But now this construction material is no longer used only for building massive structures, but is often employed by architects...

Issue 2020-02 Construction site 4.0 (3D@SITE)

3D printing of large elements on the construction site

Putzmeister Engineering GmbH, Ed. Züblin AG and HeidelbergCement AG have formed the cross-sector 3D@Site consortium, joining forces to make 3D printing suitable for use on the construction site. For...